Skillnad mellan versioner av "4.2 Introduktion till logaritmer: Exponentialfunktioner"
Taifun (Diskussion | bidrag) m |
Taifun (Diskussion | bidrag) m |
||
Rad 17: | Rad 17: | ||
− | ::<b | + | ::<b>Om log se nästa avsnitt: [[3.4 10-logaritmer|10-logaritmer]].</b> |
</big> | </big> | ||
Versionen från 2 april 2017 kl. 15.24
<< Tillbaka till Talet e | Genomgång | Övningar | Logaritmlagarna |
Exponentialfunktioner är sådana funktioner som har sin oberoende variabel \( \, x \, \) i exponenten.
- Om log se nästa avsnitt: 10-logaritmer.
Exponentialekvationer
Själva operationen \( a^x\, \) dvs att ta \( \, a\, \) upphöjt till \( \, x\, \) kallas för exponentiering och är en ny räkneoperation.
När \( \, x\, \) är lika med \( \, 2\, \) pratar man om kvadrering.
Anta i fortsättningen att \( x\, \) är en okänd variabel och \( b\, \) och \( c\, \) givna konstanter \( \neq 0 \) .
- Funktioner av typ \( y = 10^x\, \) kallas för exponentialfunktioner, generellt \( \; y = c \cdot a^x\, \).
- Ekvationer av typ \( 10^x\,= 125 \) kallas för exponentialekvationer, generellt \( \; a^x\, = b \).
I exponentialfunktioner och -ekvationer förekommer \( \, x\, \) i exponenten
I potensfunktioner och -ekvationer förekommer \( \, x \, \) i basen. Potensekvationer av typ \( \, x^a\, = b \, \) löses genom rotdragning.
Internetlänkar
http://www.youtube.com/watch?v=rYHdUrKqxaU
http://goto.glocalnet.net/larsthomee/logaritm.html
http://www.kck.amal.se/webtutor/ovel/mattec/Funktioner/F3.html
http://wiki.math.se/wikis/sf0600_0701/index.php/3.3_Logaritmer
Copyright © 2011-2017 Taifun Alishenas. All Rights Reserved.