Skillnad mellan versioner av "4.1 Repetition: Potenser"

Från Mathonline
Hoppa till: navigering, sök
m
m
 
(36 mellanliggande versioner av samma användare visas inte)
Rad 2: Rad 2:
 
{| border="0" cellspacing="0" cellpadding="0" height="30" width="100%"
 
{| border="0" cellspacing="0" cellpadding="0" height="30" width="100%"
 
| style="border-bottom:1px solid #797979" width="5px" |  
 
| style="border-bottom:1px solid #797979" width="5px" |  
{{Selected tab|[[4.1 Potenser|Genomgång]]}}
+
<!-- {{Not selected tab|[[Matte 2c Innehållsförteckning|Innehållsförteckning]]}} -->
{{Not selected tab|[[1.7 Quiz till Potenser|Quiz (Matte 1b)]]}}
+
{{Selected tab|[[4.1 Repetition: Potenser|Genomgång]]}}
{{Not selected tab|[[4.1 Övningar till Potenser|Övningar (Matte 3c)]]}}
+
{{Not selected tab|[http://www.mattekollen.se/ Om appen Mattekollen]}}
{{Not selected tab|[[4.1 Lathund till Potenser|Lathund (Matte 1b Webb)]]}}
+
{{Not selected tab|[http://beta.mattekollen.se/#/app/section Quiz i Mattekollen]}}
{{Not selected tab|[[4.2 Potensekvationer med rationella exponenter|Nästa avsnitt&nbsp;&nbsp;>> ]]}}
+
<!-- {{Not selected tab|[[4.1 Quiz till Potenser|Quiz]]}} -->
 +
{{Not selected tab|[http://34.248.89.132:1800/index.php/%C3%96vningar_till_Potenser Övningar]}}
 +
<!-- {{Not selected tab|[[4.1 Övningar till Potenser|Övningar]]}} -->
 +
<!-- {{Not selected tab|[[4.1 Lathund till Potenser|Lathund]]}}          (Matte 1b Webb) -->
 +
{{Not selected tab|[[4.2 Introduktion till logaritmer: Exponentialfunktioner|Nästa avsnitt&nbsp;&nbsp;>> ]]}}
 
| style="border-bottom:1px solid #797979"  width="100%"| &nbsp;
 
| style="border-bottom:1px solid #797979"  width="100%"| &nbsp;
 
|}
 
|}
  
  
== <b><span style="color:#931136">Repetition om potenser</span></b> ==
 
 
<table>
 
<table>
 
<tr>
 
<tr>
Rad 49: Rad 52:
 
Snabbare<span style="color:black">:</span> <math> \qquad\!\! \displaystyle{{2\,^3 \cdot \; 2\,^5 \over 2\,^4} \, = \, 2\,^{3\,+\,5\,-\,4} \, = \, 2\,^4 \, = \, 2 \cdot 2 \cdot 2 \cdot 2 \, = \, 4 \cdot 4 \, = \, 16} </math>
 
Snabbare<span style="color:black">:</span> <math> \qquad\!\! \displaystyle{{2\,^3 \cdot \; 2\,^5 \over 2\,^4} \, = \, 2\,^{3\,+\,5\,-\,4} \, = \, 2\,^4 \, = \, 2 \cdot 2 \cdot 2 \cdot 2 \, = \, 4 \cdot 4 \, = \, 16} </math>
  
För att förstå den snabbare lösningen se [[4.1_Potenser#Potenslagarna|<b><span style="color:blue">Potenslagarna</span></b>]].
+
För att förstå den snabbare lösningen se [[4.1_Repetition:_Potenser#Potenslagarna|<b><span style="color:blue">Potenslagarna</span></b>]].
 
</big>
 
</big>
 
</div>  <!-- exempel1 -->
 
</div>  <!-- exempel1 -->
Rad 128: Rad 131:
  
 
<big>
 
<big>
Potensbegreppet definierades inledningsvis endast för positiva exponenter. Men den definitionen duger inte för negativa exponenter.
+
Potensbegreppet definierades inledningsvis endast för positiva exponenter. Men den definitionen duger varken för negativa exponenter eller för exponenten <math> \, 0 \, </math>:
  
Antalet multiplikationer av basen med sig själv kan inte vara negativt. Det behövs en ny definition.
+
Antalet multiplikationer av basen med sig själv kan inte vara negativt eller <math> \, 0 \, </math>. Det behövs nya definitioner resp. slutsatser.
 
</big>
 
</big>
  
  
== <b><span style="color:#931136">Potenser med negativa exponenter: Hur räknar du?</span></b> ==
+
== <b><span style="color:#931136">Potenser med negativa exponenter</span></b> ==
 
<div class="exempel">
 
<div class="exempel">
 
[[Image: Hur raknar du negativa exponenter 20.jpg]]
 
[[Image: Hur raknar du negativa exponenter 20.jpg]]
</div>  <!-- exempel -->
+
</div>
  
<big>
 
Felet beror på att två olika räkneoperationer blandas ihop: multiplikation med "upphöjt till" eller att man inte vet vad minustecknet i exponenten betyder.
 
  
<math> \, 2\,^{\color{Red} {-3}} \, </math> betyder inte <math> \, 2 \cdot (-3) \, </math> och inte heller <math> \, {\color{Red} -} 2\,^{\color{Red} 3} \, </math> utan:
+
<table>
</big>
+
<tr>
 +
  <td><div class="ovnC">
 +
<big>Potens med negativ exponent<span style="color:black">:</span>
  
<div class="border-divblue">
+
<math> \qquad \displaystyle 2\,^{\color{Red} {-3}} \; = \;\; \frac{1}{2\,^{\color{Red} {3}}} \; = \; \frac{1}{8} \quad </math>  
<big>
+
::<math> \;\; \displaystyle 2\,^{\color{Red} {-3}} \; = \;\; 1\,/\,\underbrace{2 \, / \, 2 \, / \, 2}_{{\color{Red} 3}\;\times} \; = \; 1 \cdot \frac{1}{2} \cdot \frac{1}{2} \cdot \frac{1}{2} \; = \; \frac{1}{\underbrace{2 \, \cdot \, 2 \, \cdot \, 2}_{{\color{Red} 3}\;\times}} \; = \; \frac{1}{2\,^{\color{Red} {3}}} \; = \; \frac{1}{8} \quad </math>  
+
  
<b><span style="color:#931136">Potens med negativ exponent</span></b> = upprepad <b><span style="color:red">division</span></b> av <math> \, 1 \, </math> med basen <math> \, 2 </math>, <math> \, {\color{Red} 3} \, </math> gånger.
+
<b><span style="color:red">Invertera</span></b> potensen med positiv exponent.  
  
Eller<span style="color:black">:</span> <math> \qquad\qquad\qquad\qquad\qquad\; </math> upprepad multiplikation med basens <b><span style="color:red">invers</span></b> <math> \displaystyle \frac{1}{2} </math>, <math> \, {\color{Red} 3} \, </math> gånger.
+
----
  
<b><span style="color:#931136">Negativ exponent</span></b> innebär att <b><span style="color:red">invertera</span></b> potensen med positiv exponent, dvs<span style="color:black">:</span> <math> \;\; \displaystyle 2\,^{\color{Red} {-3}} \; = \; \frac{1}{2\,^{\color{Red} {3}}} \;\; </math>.
+
Att <b><span style="color:red">"invertera"</span></b> t.ex. <math> \, 10 \, </math> ger <math> \, \displaystyle {1 \over 10} \; </math>.
 
</big></div>
 
</big></div>
  
  
<div class="ovnE">
+
</td>
<big>Andra exempel<span style="color:black">:</span> <math> \qquad\qquad\qquad </math> Att <b><span style="color:red">"invertera"</span></b> t.ex. <math> \, 10 \, </math> ger <math> \, \displaystyle {1 \over 10} </math></big>
+
  <td>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;<div class="ovnE">
 +
<big>Andra exempel<span style="color:black">:</span></big>
 
::<math> \displaystyle{10\,^{-1} \, = \, {1 \over 10\,^1} \, = \, {1 \over 10} \, = \, 0,1} </math>
 
::<math> \displaystyle{10\,^{-1} \, = \, {1 \over 10\,^1} \, = \, {1 \over 10} \, = \, 0,1} </math>
  
Rad 165: Rad 167:
 
::<math> \displaystyle{10\,^{-3} \, = \, {1 \over 10\,^3} \, = \, {1 \over 10 \cdot 10 \cdot 10} \, = \, {1 \over 1000} \, = \, 0,001} </math>
 
::<math> \displaystyle{10\,^{-3} \, = \, {1 \over 10\,^3} \, = \, {1 \over 10 \cdot 10 \cdot 10} \, = \, {1 \over 1000} \, = \, 0,001} </math>
 
</div>
 
</div>
 +
</td>
 +
</tr>
 +
</table>
  
 
+
<big>Generellt:</big>
<big>Generellt:
+
 
+
 
+
Potensen <big><math> \, a\,^{\color{Red} {-x}} \, </math></big> med <b><span style="color:red">negativ</span></b> exponent (<math> x \, </math> heltal <math> > 0 \, </math> och <math> \, a \, \neq 0 </math>) kan definieras som<span style="color:black">:</span>
+
 
+
:::<b>Upprepad <span style="color:red">division</span> av <math> \, 1 \, </math> med basen <big><math> \, a \, </math></big> (eller multiplikation med <math> \, \displaystyle \frac{1}{a} \, </math>), <math> \, {\color{Red} x} \, </math> gånger:</b>
+
 
+
:<big><math> \displaystyle a\,^{\color{Red} {-x}} \; = \; 1 \, / \, \underbrace{a \, / \, a \, / \, a \, / \quad \ \cdots \quad / a}_{{\color{Red} x}\;{\rm gånger}} \quad {\color{Red} =} \quad 1 \cdot \underbrace{\frac{1}{a} \cdot \frac{1}{a} \cdot \frac{1}{a} \cdot \quad \cdot \cdots \quad \cdot \frac{1}{a}}_{{\color{Red} x}\;{\rm gånger}} \; = \; {1 \over a^x}</math></big>
+
 
+
Övergången från division till multiplikation (den <span style="color:red">röda</span> likheten) kan motiveras så här:
+
 
+
Uppfattar man <big><math> \, a \, </math></big> som ett bråk med nämnaren <big><math> \, 1 \, </math></big> dvs <math> \, \displaystyle \frac{a}{1} </math>, kan man ersätta divisionerna med multiplikationer med det inversa <math> \, \displaystyle \frac{1}{a} </math>.
+
 
+
I [http://mathonline.se:1800/index.php?title=1.5_Br%C3%A5kr%C3%A4kning#Multiplikation_och_division <b><span style="color:blue">Bråkräkning</span></b>] hade vi lärt oss att division med ett bråk kan skrivas som en multiplikation med det inversa bråket.
+
 
+
 
+
I de följande två påståendena ska gälla<span style="color:black">:</span> <math> \quad x \, </math> heltal <math> > 0 \, </math> och <math> \, a \, \neq 0 \quad </math>.
+
</big>
+
  
 
<div class="ovnC">
 
<div class="ovnC">
Rad 204: Rad 191:
 
</div>
 
</div>
  
 +
 +
== <b><span style="color:#931136">Potenser med exponenten <math> \, 0 \, </math></span></b> ==
 +
 +
<big>Exempel:</big>
 +
 +
<div class="ovnE">
 +
<big><math> \quad \displaystyle 2\,^{\color{Red} 0} \;\; = \;\; 1 \quad </math>
 +
</big></div>
 +
 +
 +
<big>Generellt:</big>
  
 
<div class="ovnC">
 
<div class="ovnC">
Rad 228: Rad 226:
  
  
<big>
+
<big>I båda föregående påståenden ska alltid gälla<span style="color:black">:</span> <math> \quad x \, </math> heltal <math> > 0 \, </math> och <math> \, a \, \neq 0 \quad </math>.
Exemplet nedan illustrerar lagen ovan genom att visa att potenser med negativa exponenter är en naturlig fortsättning på potenser med positiva exponenter och <b><span style="color:red">nollte potensen</span></b> däremellan (Potens <math> \; = \; </math> upprepad multiplikation):
+
 
 +
 
 +
Exemplet nedan ska illustrera lagen ovan genom att visa följande:
 +
 
 +
Potenser med negativa exponenter är en naturlig fortsättning på potenser med positiva exponenter.
 +
 
 +
<b><span style="color:red">Nollte potensen</span></b> bildar övergången mellan positiva och negativa exponenter, precis som <math> \, 0 \, </math> är övergången mellan positiva och negativa tal:
 
</big>
 
</big>
  
Rad 258: Rad 262:
 
Därför blir endast <math> \, {\color{Red} 1} \, </math> kvar, när vi kommer till <math> \, {\color{Red} {5^0}} \, </math> då alla <math> \, 5</math>-or har försvunnit.
 
Därför blir endast <math> \, {\color{Red} 1} \, </math> kvar, när vi kommer till <math> \, {\color{Red} {5^0}} \, </math> då alla <math> \, 5</math>-or har försvunnit.
 
</div>
 
</div>
 +
 +
 +
<big>
 +
== <small><b><span style="color:#931136">Potenser med rationella exponenter</span></b></small> ==
 +
Här ska vi lägga till [[4.1_Repetition:_Potenser#Potenslagarna|<b><span style="color:blue">Potenslagarna</span></b>]] ytterligare tre lagar om potenser med rationella exponenter.
 +
 +
Potenser med rationella exponenter är potenser som har [http://34.248.89.132:1800/index.php?title=1.1_Om_tal#Olika_typer_av_tal <b><span style="color:red">rationella tal</span></b>] (bråktal) i exponenten.
 +
 +
De är bara ett annat sätt att skriva rötter, både kvadratrötter och högre rötter:
 +
 +
'''Påstående''':
 +
 +
<div class="border-divblue">
 +
===== <b><span style="color:#931136">Lagen om kvadratroten</span></b> <math> \quad a^{1 \over 2} \; = \; \sqrt{a} </math> =====
 +
</div> <!-- border-divblue -->
 +
 +
'''Bevis''':
 +
 +
Vi multiplicerar <math> a </math><big><math>^{1 \over 2} </math></big> två gånger med sig själv och använder första potenslagen:
 +
 +
:::<big><math> \displaystyle a^{1 \over 2} \cdot a^{1 \over 2} \; = \; a^{{1 \over 2} + {1 \over 2}} \; = \; a^{2 \over 2} \; = \; a^1 \; = \; a </math></big>
 +
 +
Vi drar kvadratroten ur båda leden och går vidare<span style="color:black">:</span>
 +
 +
:::<big><math>\begin{array}{rclcl}    a^{1 \over 2} \cdot a^{1 \over 2} & = & a        & \qquad | & \sqrt{\,.\,} \\
 +
                              \sqrt{a^{1 \over 2} \cdot a^{1 \over 2}} & = & \sqrt{a} &          &              \\
 +
                                                        a^{1 \over 2}  & = & \sqrt{a} & \qquad  &              \\
 +
              \end{array}</math></big>
 +
'''V.s.b.''' &nbsp; ('''V'''ilket '''s'''kulle '''b'''evisas)
 +
 +
I följande ska <math> \; n \; </math> vara ett heltal <math> > 0 </math> och <math> \, a \, \neq 0 </math>.
 +
 +
'''Påstående''':
 +
 +
<div class="border-divblue">
 +
===== <b><span style="color:#931136">Lagen om högre rötter</span></b> <math> \quad a^{1 \over n} \; = \; \sqrt[n]{a} </math> =====
 +
</div> <!-- border-divblue -->
 +
 +
'''Bevisidé''':
 +
 +
Vi visar påståendet för specialfallet <math> \, n=3 </math>:
 +
 +
Vi multiplicerar <math> a </math><big><math>^{1 \over 3} </math></big> tre gånger med sig själv och använder första potenslagen:
 +
 +
:::<big><math> \displaystyle a^{1 \over 3} \cdot a^{1 \over 3} \cdot a^{1 \over 3} \; = \; a^{{1 \over 3} + {1 \over 3} + {1 \over 3}} \; = \; a^{3 \over 3} \; = \; a^1 \; = \; a </math></big>
 +
 +
Vi drar 3:e roten ur båda leden och går vidare<span style="color:black">:</span>
 +
:::<big><math>\begin{array}{rclcl}    a^{1 \over 3} \cdot a^{1 \over 3} \cdot a^{1 \over 3} & = & a        & \qquad | & \sqrt[3]{\,.\,} \\
 +
                            \sqrt[3]{a^{1 \over 3} \cdot a^{1 \over 3} \cdot a^{1 \over 3}} & = & \sqrt[3]{a} &          &              \\
 +
                                                                            a^{1 \over 3}  & = & \sqrt[3]{a} & \qquad  &              \\
 +
        \end{array}</math></big>
 +
'''V.s.b.'''
 +
 +
Denna bevisidé kan vidareutvecklas till det allmänna fallet, där <math> \, m \, </math> ska vara ett heltal, <math> \, n \, </math> ett heltal <math> > 0 </math>  och <math> \, a \, \neq 0 </math>:
 +
 +
<div class="border-divblue">
 +
===== <b><span style="color:#931136">Lagen om rationell exponent</span></b> <math> \quad \displaystyle a^{m \over n} \; = \; \sqrt[n]{a^m} </math> =====
 +
</div> <!-- border-divblue -->
 +
 +
Tabellen över [[4.1_Repetition:_Potenser#Potenslagarna|<b><span style="color:blue">Potenslagarna</span></b>]] borde kompletteras med dessa lagar för rationella exponenter.
 +
 +
 +
= <small><b><span style="color:#931136">Potensekvationer</span></b></small> =
 +
 +
Anta i fortsättningen att <math> \, x \, </math> är en okänd variabel och <math> b\, </math> och <math> c\, </math> givna konstanter <math> \neq 0 </math> .
 +
 +
::Funktioner av typ <math> y = x^3\, </math> kallas för <b><span style="color:red">potensfunktioner</span></b>, generellt <math> \; y = c \cdot x^b\, </math>.
 +
 +
::Ekvationer av typ <math> x^3\, = 8 </math> kallas för <b><span style="color:red">potensekvationer</span></b>, generellt <math> \; x^b\, = c </math>.
 +
 +
I potensekvationer av typ <math> \, x\,^a\, = b \, </math> förekommer obekanten <math> \, x \, </math> i <b><span style="color:red">basen</span></b>:
 +
 +
<div class="border-divblue">Potensekvationer av typ <math> \, {\color{Red} x}\,^a\, = b  \, </math> löses genom <b><span style="color:red">rotdragning</span></b>.</div>
 +
 +
Rotdragning är ekvivalent (identiskt) med potentiering med rationella exponenter.
 +
 +
För t.ex. potensekvationen <math> x^3\, = 8 </math> finns det två olika sätt att beskriva lösningen:
 +
 +
:::<big><math>\begin{array}{rclcl}    x^3 & = & 8          & \qquad | & \sqrt[3]{\,.\,} \\
 +
                            \sqrt[3]{x^3} & = & \sqrt[3]{8} &          &                \\
 +
                                        x & = & 2          &          &                \\
 +
              \end{array}</math></big>
 +
 +
Alternativt kan rötter skrivas som potenser med rationella exponenter:
 +
 +
:::<big><math>\begin{array}{rclcl}    x^3 & = & 8            & \qquad | & (\,\cdot\,)^{1 \over 3} \\
 +
                        (x^3)^{1 \over 3} & = & 8^{1 \over 3} &          &                        \\
 +
                    x^{3\cdot{1 \over 3}} & = & 8^{1 \over 3} &          &                        \\
 +
                                      x  & = & 2            &          &                        \\
 +
              \end{array}</math></big>
 +
 +
I övergången från den andra till den tredje raden har den 3:e potenslagen använts på vänsterledet.
 +
 +
</big>
  
  
Rad 276: Rad 374:
  
 
http://www.youtube.com/watch?v=iYgG4LUqXks
 
http://www.youtube.com/watch?v=iYgG4LUqXks
 
http://www.webbmatte.se/gym/arabiska/2/2_8_4sv.html
 
 
http://www.webbmatte.se/gym/arabiska/2/2_8_3sv.html
 
  
 
http://wiki.math.se/wikis/forberedandematte1/index.php/1.3_%C3%96vningar
 
http://wiki.math.se/wikis/forberedandematte1/index.php/1.3_%C3%96vningar
Rad 290: Rad 384:
  
  
[[Matte:Copyrights|Copyright]] © 2010-2017 Math Online Sweden AB. All Rights Reserved.
+
[[Matte:Copyrights|Copyright]] © 2023 <b><span style="color:blue">Lieta AB</span></b>. All Rights Reserved.

Nuvarande version från 30 april 2024 kl. 09.55

       Genomgång          Om appen Mattekollen          Quiz i Mattekollen          Övningar          Nästa avsnitt  >>      


Potens Bas Exponent 80.jpg            

Exempel på potens:

\[ 2\,^{\color{Red} 3} \; = \;\; \underbrace{2 \, \cdot \, 2 \, \cdot \, 2}_{{\color{Red} 3}\;\times} \; = \; 8\]

Potens = upprepad multiplikation

av \( \, 2 \, \) med sig själv, \( \, {\color{Red} 3} \, \) gånger.


OBS!   Förväxla inte begreppen: \( \, 2\,^3 \, \) är själva potensen, medan \( \, {\color{Red} 3} \, \) är exponenten och \( \, {\color{green} 2}\, \) förstås basen.

Exponenten \( \, {\color{Red} 3} \, \) är inget tal som ingår i beräkningen, utan endast en information om att:

\( \, 2 \, \) ska multipliceras \( \, {\color{Red} 3} \, \) gånger med sig själv, en förkortning för upprepad multiplikation (jfr. upprepad addition).


Exempel

Förenkla: \( \qquad \displaystyle{2\,^3 \cdot \; 2\,^5 \over 2\,^4} \)


Lösning: \( \qquad \displaystyle{{2\,^3 \cdot \; 2\,^5 \over 2\,^4} \, = \, {2 \cdot 2 \cdot 2 \quad \cdot \quad 2 \cdot 2 \cdot 2 \cdot 2 \cdot 2 \over 2 \cdot 2 \cdot 2 \cdot 2} \, = \, {2 \cdot 2 \cdot 2 \quad \cdot \quad 2 \cdot \cancel{2 \cdot 2 \cdot 2 \cdot 2} \over \cancel{2 \cdot 2 \cdot 2 \cdot 2}} \, = \, 2 \cdot 2 \cdot 2 \cdot 2 \, = \, 4 \cdot 4 \, = \, 16} \)

OBS!   Förenkla alltid först, räkna sedan!

Snabbare: \( \qquad\!\! \displaystyle{{2\,^3 \cdot \; 2\,^5 \over 2\,^4} \, = \, 2\,^{3\,+\,5\,-\,4} \, = \, 2\,^4 \, = \, 2 \cdot 2 \cdot 2 \cdot 2 \, = \, 4 \cdot 4 \, = \, 16} \)

För att förstå den snabbare lösningen se Potenslagarna.


Generellt:

Potenser med positiva exponenter

Potensen \( \, a\,^{\color{Red} x} \, \) med positiv exponent (\( x \, \) heltal \( > 0 \, \) och \( \, a \, \neq 0 \)) kan definieras som:

Upprepad multiplikation av \( \, a \, \) med sig själv, \( \, {\color{Red} x} \, \) gånger:
\( \quad a\,^{\color{Red} x} = \underbrace{a \cdot a \cdot a \cdot \quad \ \cdots \quad \cdot a}_{{\color{Red} x}\;{\rm gånger}} \)


Potenslagarna

Första potenslagen: \( \qquad\qquad\quad\;\, a^x \cdot a^y \; = \; a\,^{x \, + \, y} \qquad\qquad \)


Andra potenslagen: \( \qquad\qquad\qquad\;\;\; \displaystyle {a^x \over a^y} \; = \; a\,^{x \, - \, y} \qquad\qquad \)


Tredje potenslagen: \( \qquad\qquad\qquad \displaystyle {(a^x)^y} \; = \; a\,^{x \, \cdot \, y} \qquad\qquad \)


Lagen om nollte potens: \( \qquad\qquad\quad\;\;\, a\,^0 \; = \; 1 \qquad\qquad \)


Lagen om negativ exponent: \( \qquad\quad\;\;\; a\,^{-x} \; = \; \displaystyle {1 \over a\,^x} \qquad\qquad \)


Potens av en produkt: \( \qquad\qquad\;\, (a \cdot b)\,^x \; = \; a\,^x \cdot b\,^x \qquad\qquad \)


Potens av en kvot: \( \qquad\qquad\qquad\, \left(\displaystyle {a \over b}\right)^x \; = \; \displaystyle {a\,^x \over b\,^x} \qquad\qquad \)


Dessa lagar gäller för potenser där baserna \( \, a,\,b \, \) är tal \( \, \neq 0 \, \) och exponenterna \( \, x,\,y \, \) är godtyckliga tal.


Exempel på första potenslagen

Förenkla: \( \quad\;\; a\,^2 \, \cdot \, a\,^3 \)


Lösning:

\( a\,^2 \cdot a\,^3 \; = \; \underbrace{a \cdot a}_{2\;\times} \; \cdot \; \underbrace{a \cdot a \cdot a}_{3\;\times} \; = \; \underbrace{a \cdot a \cdot a \cdot a \cdot a}_{{\color{Red} 5}\;\times} \; = \; a\,^{\color{Red} 5}\)

Snabbare:

\( a\,^2 \cdot a\,^3 \; = \; a\,^{2\,+\,3} = \; a\,^{\color{Red} 5} \)


Den snabbare lösningen ovan är ett exempel på den första potenslagen. Nedan följer ett exempel på den andra potenslagen.


Exempel på andra potenslagen

\( \displaystyle {a\,^{\color{Red} 5} \over a\,^{\color{Red} 3}} \; = \; {a \cdot a \cdot a \cdot a \cdot a \; \over \; a \cdot a \cdot a} \; = \; {a \cdot a \cdot \cancel{a \cdot a \cdot a} \; \over \; \cancel{a \cdot a \cdot a}} \; = \; a \cdot a \; = \; a\,^2 \)

Snabbare:

\( \displaystyle {a\,^{\color{Red} 5} \over a\,^{\color{Red} 3}} \; = \; a\,^{{\color{Red} {5\,-\,3}}} \; = \; a\,^2 \)


Potensbegreppet definierades inledningsvis endast för positiva exponenter. Men den definitionen duger varken för negativa exponenter eller för exponenten \( \, 0 \, \):

Antalet multiplikationer av basen med sig själv kan inte vara negativt eller \( \, 0 \, \). Det behövs nya definitioner resp. slutsatser.


Potenser med negativa exponenter

Hur raknar du negativa exponenter 20.jpg


Potens med negativ exponent:

\( \qquad \displaystyle 2\,^{\color{Red} {-3}} \; = \;\; \frac{1}{2\,^{\color{Red} {3}}} \; = \; \frac{1}{8} \quad \)

Invertera potensen med positiv exponent.


Att "invertera" t.ex. \( \, 10 \, \) ger \( \, \displaystyle {1 \over 10} \; \).


      

Andra exempel:

\[ \displaystyle{10\,^{-1} \, = \, {1 \over 10\,^1} \, = \, {1 \over 10} \, = \, 0,1} \]
\[ \displaystyle{10\,^{-2} \, = \, {1 \over 10\,^2} \, = \, {1 \over 10 \cdot 10} \, = \, {1 \over 100} \, = \, 0,01} \]
\[ \displaystyle{10\,^{-3} \, = \, {1 \over 10\,^3} \, = \, {1 \over 10 \cdot 10 \cdot 10} \, = \, {1 \over 1000} \, = \, 0,001} \]

Generellt:

Påstående:

Lagen om negativ exponent \( \quad a\,^{-x} \; = \; \displaystyle {1 \over a\,^x} \)

Bevis:

\( \displaystyle{1 \over a^x} \; = \; \displaystyle{a^0 \over a^x} \; = \; a^{0-x} \; = \; a^{-x} \)

In den första likheten har vi använt lagen om nollte potens baklänges: \( \; 1 = a^0 \; \).

In den andra likheten har vi använt andra potenslagen: \( \; \displaystyle {a^x \over a^y} \; = \; a\,^{x \, - \, y} \; \).

Efter dessa steg får vi påståendet, fast baklänges.


Potenser med exponenten \( \, 0 \, \)

Exempel:

\( \quad \displaystyle 2\,^{\color{Red} 0} \;\; = \;\; 1 \quad \)


Generellt:

Påstående:

Lagen om nollte potens \( \quad a^0 \; = \; 1 \; \)

Bevis:

Påståendet kan bevisas genom att använda andra potenslagen:

\( \displaystyle{a^x \over a^x} \; = \; a^{x-x} \; = \; a^0 \)

Å andra sidan vet vi att ett bråk med samma täljare som nämnare har värdet \( \, 1 \):

\( \displaystyle{a^x \over a^x} \; = \; 1 \)

Av raderna ovan följer påståendet:

\( a^0 \; = \; 1 \)


I båda föregående påståenden ska alltid gälla: \( \quad x \, \) heltal \( > 0 \, \) och \( \, a \, \neq 0 \quad \).


Exemplet nedan ska illustrera lagen ovan genom att visa följande:

Potenser med negativa exponenter är en naturlig fortsättning på potenser med positiva exponenter.

Nollte potensen bildar övergången mellan positiva och negativa exponenter, precis som \( \, 0 \, \) är övergången mellan positiva och negativa tal:


Varför är \( \; 5\,^0 \, = \, 1 \; \)?

\[ \;\; 5^4 \; = \; {\color{Red} 1} \cdot 5 \cdot 5 \cdot 5 \cdot 5 \]
\[ \;\; 5^3 \; = \; {\color{Red} 1} \cdot 5 \cdot 5 \cdot 5 \]
\[ \;\; 5^2 \; = \; {\color{Red} 1} \cdot 5 \cdot 5 \]
\[ \;\; 5^1 \; = \; {\color{Red} 1} \cdot 5 \]
\[ \; \boxed{{\color{Red} {5^0 \; = \; 1}}} \]
\[ \;\; 5^{-1} \; = \; \displaystyle{{\color{Red} 1} \over 5} \]
\[ \;\; 5^{-2} \; = \; \displaystyle{{\color{Red} 1} \over 5 \cdot 5} \]
\[ \;\; 5^{-3} \; = \; \displaystyle{{\color{Red} 1} \over 5 \cdot 5 \cdot 5} \]
\[ \;\; 5^{-4} \; = \; \displaystyle{{\color{Red} 1} \over 5 \cdot 5 \cdot 5 \cdot 5 } \]

Att \( \; {\color{Red} 1} \)-orna följer med hela tiden beror på att multiplikationens enhet är \( \, {\color{Red} 1} \), dvs \( \, a \cdot {\color{Red} 1} \, = \, a \).

Därför blir endast \( \, {\color{Red} 1} \, \) kvar, när vi kommer till \( \, {\color{Red} {5^0}} \, \) då alla \( \, 5\)-or har försvunnit.


Potenser med rationella exponenter

Här ska vi lägga till Potenslagarna ytterligare tre lagar om potenser med rationella exponenter.

Potenser med rationella exponenter är potenser som har rationella tal (bråktal) i exponenten.

De är bara ett annat sätt att skriva rötter, både kvadratrötter och högre rötter:

Påstående:

Lagen om kvadratroten \( \quad a^{1 \over 2} \; = \; \sqrt{a} \)

Bevis:

Vi multiplicerar \( a \)\(^{1 \over 2} \) två gånger med sig själv och använder första potenslagen:

\( \displaystyle a^{1 \over 2} \cdot a^{1 \over 2} \; = \; a^{{1 \over 2} + {1 \over 2}} \; = \; a^{2 \over 2} \; = \; a^1 \; = \; a \)

Vi drar kvadratroten ur båda leden och går vidare:

\(\begin{array}{rclcl} a^{1 \over 2} \cdot a^{1 \over 2} & = & a & \qquad | & \sqrt{\,.\,} \\ \sqrt{a^{1 \over 2} \cdot a^{1 \over 2}} & = & \sqrt{a} & & \\ a^{1 \over 2} & = & \sqrt{a} & \qquad & \\ \end{array}\)

V.s.b.   (Vilket skulle bevisas)

I följande ska \( \; n \; \) vara ett heltal \( > 0 \) och \( \, a \, \neq 0 \).

Påstående:

Lagen om högre rötter \( \quad a^{1 \over n} \; = \; \sqrt[n]{a} \)

Bevisidé:

Vi visar påståendet för specialfallet \( \, n=3 \):

Vi multiplicerar \( a \)\(^{1 \over 3} \) tre gånger med sig själv och använder första potenslagen:

\( \displaystyle a^{1 \over 3} \cdot a^{1 \over 3} \cdot a^{1 \over 3} \; = \; a^{{1 \over 3} + {1 \over 3} + {1 \over 3}} \; = \; a^{3 \over 3} \; = \; a^1 \; = \; a \)

Vi drar 3:e roten ur båda leden och går vidare:

\(\begin{array}{rclcl} a^{1 \over 3} \cdot a^{1 \over 3} \cdot a^{1 \over 3} & = & a & \qquad | & \sqrt[3]{\,.\,} \\ \sqrt[3]{a^{1 \over 3} \cdot a^{1 \over 3} \cdot a^{1 \over 3}} & = & \sqrt[3]{a} & & \\ a^{1 \over 3} & = & \sqrt[3]{a} & \qquad & \\ \end{array}\)

V.s.b.

Denna bevisidé kan vidareutvecklas till det allmänna fallet, där \( \, m \, \) ska vara ett heltal, \( \, n \, \) ett heltal \( > 0 \) och \( \, a \, \neq 0 \):

Lagen om rationell exponent \( \quad \displaystyle a^{m \over n} \; = \; \sqrt[n]{a^m} \)

Tabellen över Potenslagarna borde kompletteras med dessa lagar för rationella exponenter.


Potensekvationer

Anta i fortsättningen att \( \, x \, \) är en okänd variabel och \( b\, \) och \( c\, \) givna konstanter \( \neq 0 \) .

Funktioner av typ \( y = x^3\, \) kallas för potensfunktioner, generellt \( \; y = c \cdot x^b\, \).
Ekvationer av typ \( x^3\, = 8 \) kallas för potensekvationer, generellt \( \; x^b\, = c \).

I potensekvationer av typ \( \, x\,^a\, = b \, \) förekommer obekanten \( \, x \, \) i basen:

Potensekvationer av typ \( \, {\color{Red} x}\,^a\, = b \, \) löses genom rotdragning.

Rotdragning är ekvivalent (identiskt) med potentiering med rationella exponenter.

För t.ex. potensekvationen \( x^3\, = 8 \) finns det två olika sätt att beskriva lösningen:

\(\begin{array}{rclcl} x^3 & = & 8 & \qquad | & \sqrt[3]{\,.\,} \\ \sqrt[3]{x^3} & = & \sqrt[3]{8} & & \\ x & = & 2 & & \\ \end{array}\)

Alternativt kan rötter skrivas som potenser med rationella exponenter:

\(\begin{array}{rclcl} x^3 & = & 8 & \qquad | & (\,\cdot\,)^{1 \over 3} \\ (x^3)^{1 \over 3} & = & 8^{1 \over 3} & & \\ x^{3\cdot{1 \over 3}} & = & 8^{1 \over 3} & & \\ x & = & 2 & & \\ \end{array}\)

I övergången från den andra till den tredje raden har den 3:e potenslagen använts på vänsterledet.


Blandade exempel

Potens Ex 1.jpg


Potens Ex 2.jpg


Potens Ex 3.jpg


Internetlänkar

http://www.youtube.com/watch?v=iYgG4LUqXks

http://wiki.math.se/wikis/forberedandematte1/index.php/1.3_%C3%96vningar





Copyright © 2023 Lieta AB. All Rights Reserved.