3.5 Allmänna lösningsmetoder för 2:a gradsekvationer
<< Förra avsnitt | Genomgång | Övningar | Nästa avsnitt >> |
p-q formeln \( - \) en allmän lösningsformel för 2:a gradsekvationer i normalform
Det omvända problemet: Lösningarna är givna, ekvationen är sökd.
Uppgift:
Ställ upp en 2:a gradsekvation vars lösningar är \( \, x_1 = 2 \, \) och \( \, x_2 = 3 \).
Lösning:
För lösningarna \( x_1\,\) och \( \, x_2\,\) av 2:a gradsekvationen \( \, x^2 + p\,x + q = 0 \, \) gäller
Vietas formler:
Därmed blir 2:a gradsekvationen:
|
\( \qquad \) | Kontroll och jämförelse med p-q-formeln:
|
Vietas formler \( - \) en alternativ lösningsmetod för 2:a gradsekvationer i normalform
Om 2:gradsekvationen \( \; x^2 + p\,x + q \; = \; 0 \; \) har lösnin-
garna \( x_1\, \) och \( x_2\, \) så gäller: \( \qquad \boxed{\begin{align} x_1 + x_2 & = -p \\ x_1 \cdot x_2 & = q \end{align}} \)
Bevis av Vietas formler med p-q formeln
2:a gradsekvationen \( \, x^2 + p\,x + q = 0\,\) har enligt pq-formeln lösningarna \( \quad \displaystyle x_{1,2}=-\frac{p}{2}\pm\sqrt{\bigg(\frac{p}{2}\bigg)^2-q}\)
Om vi adderar de båda lösningarna ovan får vi:
\( \displaystyle x_1 \, + \, x_2 \, = \, \left(-\frac{p}{2} \, + \, \sqrt{\bigg(\frac{p}{2}\bigg)^2-q}\right) \, + \, \left(-\frac{p}{2} \, - \, \sqrt{\bigg(\frac{p}{2}\bigg)^2-q}\right) \, = \, -\frac{p}{2} \, - \, \frac{p}{2} \, = \, - \, p\)
Detta för att de båda rotuttrycken tar ut varandra när vi löser upp parenteserna, vilket bevisar Vietas första formel.
Om vi nu multiplicerar pq-formelns båda lösningar med varandra får vi:
\( \displaystyle x_1 \cdot x_2 = \left(-\frac{p}{2} + \sqrt{\bigg(\frac{p}{2}\bigg)^2-q}\right) \cdot \left(-\frac{p}{2} - \sqrt{\bigg(\frac{p}{2}\bigg)^2-q}\right) \color{Red} = \bigg(\frac{p}{2}\bigg)^2 - \left( \bigg(\frac{p}{2}\bigg)^2-q \right) = \bigg(\frac{p}{2}\bigg)^2 - \bigg(\frac{p}{2}\bigg)^2 + q \, = \, q \)
Omformningen kring \( \color{Red} = \) sker enligt konjugatregeln \( (a+b) \cdot (a-b) = a^2 - b^2 \) om vi sätter \( \displaystyle a = -\frac{p}{2} \) och \( \displaystyle b = \sqrt{\bigg(\frac{p}{2}\bigg)^2-q}\).
Detta bevisar Vietas andra formel.
Den franske matematikern François Viète var en av de första som på \(1500\)-talet ställde upp formlerna ovan.
Därför kallas formlerna efter honom.
Lösning av 2:a gradsekvationer med Vieta (utan p-q-formeln)
Exempel 1:
Lös ekvationen \( \quad x^2 - 7\,x + 10 \; = \; 0 \)
Lösning:
För lösningarna \( x_1\,\) och \( x_2\,\) måste enligt Vietas formler gälla:
- \[ \begin{align} x_1 + x_2 & = -(-7) = 7 \\ x_1 \cdot x_2 & = 10 \end{align}\]
Vi måste alltså hitta två tal vars produkt är 10 och vars summa är 7.
Med lite provande hittar man \( \, 2 \, \) och \( \, 5 \, \) eftersom \( \, 2 + 5 = 7\, \) och \( \, 2 \cdot 5 = 10 \).
Kontrollen bekräftar resultatet:
- \[ 2^2 - 7\cdot 2 + 10 = 4 - 14 + 10 = 0 \]
- \[ 5^2 - 7\cdot 5 + 10 = 25 - 35 + 10 = 0 \]
Har vi på det här enkla sättet hittat nollställena till polynomet \( x^2 - 7\,x + 10 \) kan vi faktorisera det:
- \[ x^2 - 7\,x + 10 = (x - 2) \cdot (x - 5) \]
Utveckling av produkten på höger sidan bekräftar faktoriseringen.
Exempel 2
Lös ekvationen \( \quad x^2 - 8\,x + 16 \; = \; 0 \)
Lösning:
Vietas formler ger:
- \[ \begin{align} x_1 + x_2 & = -(-8) = 8 \\ x_1 \cdot x_2 & = 16 \end{align}\]
Man hittar lösningarna \( x_1 = 4\,\) och \( x_2 = 4\,\) eftersom \( 4 + 4 = 8\,\) och \( 4 \cdot 4 = 16 \).
Därför kan polynomet \( x^2 - 8\,x + 16 \) faktoriseras så här:
- \[ x^2 - 8\,x + 16 = (x - 4) \cdot (x - 4) = (x - 4)^2 \]
Den dubbla förekomsten av faktorn \( (x-4)\,\) ger roten, dvs lösningen \( x = 4\,\), dess namn dubbelrot.
Nackdelen med Vieta
En nackdel med Vietas formler är att man kan råka ut för sådana ekvationer så att det i praktiken blir svårt att få fram lösningarna direkt. I så fall måste man återgå till p-q formeln. Ett exempel är:
- \[ x^2 - 13\,x + 2 = 0 \]
Vietas formler ger:
- \[ \begin{align} x_1 + x_2 & = -(-13) = 13 \\ x_1 \cdot x_2 & = 2 \end{align}\]
Det är inte så enkelt att få fram lösningarna \( x_1\, \) och \( x_2\, \) ur dessa relationer.
Med p-q formeln får man:
- \[\begin{align} x_1 & = 12,84428877 \\ x_2 & = 0,15571123 \\ \end{align}\]
I efterhand kan vi ändå verifiera Vietas formler eftersom de är generella:
- \[ \begin{align} 12,84428877 + 0,15571123 & = 13 \\ 12,84428877 \cdot 0,15571123 & = 2 \end{align}\]
Copyright © 2024 Lieta AB. All Rights Reserved.