4.1 Lathund till Potenser
Genomgång Potenser | Quiz (Matte1b) | Övningar | Lathund Webb (Matte1b) | Nästa avsnitt >> |
Potens
Potenslagarna
Första potenslagen: \( \qquad\qquad\quad\;\, a^x \cdot a^y \; = \; a\,^{x \, + \, y} \qquad\qquad \)
Andra potenslagen: \( \qquad\qquad\qquad\;\;\; \displaystyle {a^x \over a^y} \; = \; a\,^{x \, - \, y} \qquad\qquad \)
Tredje potenslagen: \( \qquad\qquad\qquad \displaystyle {(a^x)^y} \; = \; a\,^{x \, \cdot \, y} \qquad\qquad \)
Lagen om nollte potens: \( \qquad\qquad\quad\;\;\, a\,^0 \; = \; 1 \qquad\qquad \)
Lagen om negativ exponent: \( \qquad\quad\;\;\; a\,^{-x} \; = \; \displaystyle {1 \over a\,^x} \qquad\qquad \)
Potens av en produkt: \( \qquad\qquad\;\, (a \cdot b)\,^x \; = \; a\,^x \cdot b\,^x \qquad\qquad \)
Potens av en kvot: \( \qquad\qquad\qquad\, \left(\displaystyle {a \over b}\right)^x \; = \; \displaystyle {a\,^x \over b\,^x} \qquad\qquad \)
Potenser med negativa exponenter
Exempel på potens med negativ exponent:
- \[ \;\; \displaystyle 2\,^{\color{Red} {-3}} \; = \;\; 1\,/\,\underbrace{2 \, / \, 2 \, / \, 2}_{{\color{Red} 3}\;\times} \; = \; 1 \cdot \frac{1}{2} \cdot \frac{1}{2} \cdot \frac{1}{2} \; = \; \frac{1}{\underbrace{2 \, \cdot \, 2 \, \cdot \, 2}_{{\color{Red} 3}\;\times}} \; = \; \frac{1}{2\,^{\color{Red} {3}}} \; = \; \frac{1}{8} \quad \]
Potens med negativ exponent = upprepad division av \( \, 1 \, \) med basen \( \, 2 \), \( \, {\color{Red} 3} \, \) gånger.
Eller: \( \qquad\qquad\qquad\qquad\qquad\; \) upprepad multiplikation med basens invers \( \displaystyle \frac{1}{2} \), \( \, {\color{Red} 3} \, \) gånger.
Negativ exponent innebär att invertera potensen med positiv exponent.
Grundpotensform
Definition:
- \[ a \, \cdot \, 10\,^n \quad\; {\rm kallas\;{\color{Red} {grundpotensform}}\;om\;} n \; {\rm är\;heltal} \quad\; {\rm och} \quad\; 1 \leq a < 10 \; {\rm .}\]
Copyright © 2010-2017 Math Online Sweden AB. All Rights Reserved.